Object-Centric Representation Learning for Video Question Answering

Long Hoang Dang, Thao Minh Le, Vuong Le, Truyen Tran Presented at IJCNN 2021

Introduction

General Video QA Framework

Our focus: Object-centric representation

- **Objects** in video are primary constructs that have unique evolving lives throughout space-time
- To predict a correct answer, we need:
 - Understand the **evolution** of the object
 - Capture the contextualized interaction with its neighbours

Object-centric Neural Architecture for Video QA

Constructing Object Tubelets

- For each object:
 - The appearance feature
 - The geometrical feature : coordinates of the region box
- The *position-specific appearance* of object:
- Contextual object (ResNet features)

Language-conditioned Representation

- Divide into K equal temporal parts:
- where is the *position-specific appearance* feature.
- Temporal attention mechanism: reduce irrelevant visual information.
- Binary mask: exclude missed detections of objects.

Query-conditioned Object Graph

- A graph
 - are nodes
 - Adjacent matrix is given by:

Video as Evolving Object Graph

• Temporal parts are then connected through a BiLSTM:

• Compute a résumé for each object by summarizing its lifetime:

,

and are end states of the BiLSTM.

System 2: General-proposed Reasoning Engine

- Our *object-centric video representation* can combine with a wide range of reasoning models.
 - MACNet (Hudson et al. 2018)
 - LOGNet (Le et al. 2020)

Experiments

Madal	Test accuracy (%)							
woder	MSVD-QA	MSRVTT-QA						
ST-VQA	31.3	30.9						
Co-Mem	31.7	32.0						
AMU	32.0	32.5						
HME	33.7	33.0						
HRA	34.4	35.1						
HCRN	36.1	35.6						
OCRL+LOGNet	38.2	36.0						

Comparison with state-of-the-art-methods on three common datasets (MSVD-QA, MSRVTT-QA and SVQA). Our model is referred as OCRL+LOGNet.

Models	Exist	Count	Integer Comparison		Attribute Comparison				Query							
			More	Equal	Less	Color	Size	Туре	Dir	Shape	Colo r	Size	Туре	Dir	Shape	All
SA+TA	52.0	38.2	74.3	57.7	61.6	56.0	55.9	53.4	57.5	53.0	23.4	63.3	62.9	43.2	41.7	44.9
STRN	54.0	44.7	72.2	57.8	63.0	56.4	55.3	50.7	50.1	50.0	24.3	59.7	59.3	28.2	44.5	47.6
CRN+MAC	72.8	56.7	84.5	71.7	75.9	70.5	76.2	90.7	75.9	57.2	76.1	92.8	91.0	87.4	85.4	75.8
OCRL+MAC	77.4	56.7	81.2	64.6	65.0	90.0	93.4	90.1	77.0	93.5	77.8	92.9	91.3	82.5	89.5	77.8
OCRL+LOG	81.7	61.5	83.2	64.9	71.4	92.7	97.2	94.6	88.8	95.7	75.1	90.9	90.3	82.6	86.8	79.5

- Proposed a novel neural architecture for object-centric representation learning in video question answering.
- Introduced the concept of résumé that summarizes the live of an object over the entire video.

Thank you QA